
Building and programming an autonomous Robot

García Sebastián

MatesLab

Mar del Plata, Buenos Aires, Argentina.

eldraco@gmail.com

Abstract

This paper is intended to show how it was designed, built and programmed an
autonomous robot cheap controlled using the Arduino open platform. Having no
prior experience in electronics, it was necessary to learn almost every electronic
principle and to overcome a lot of mechanical problems. New distance sensors
had to be created from scratch and several test were carried on before ending
with a working prototype.

Keywords: robotics, arduino, microcontroler

1. Introduction

Making robots and learn how to program them has been and it is the dream
of a lot of young boys, hackers, researchers and a lot people in general. Being
able to design and build your own robot seems to boost the imagination and
creativity. Some robot build-your-self kits had been even sold in street newspa-
pers kiosks with success and a lot of academic and non-academic work has been
done in the �eld. New kits and peripherals, now cheap enough to be bough by
most of people has also helped to bring this desire closer.

Nevertheless, building a robot still needs of microcontrolers to be programmed
and electronic components to be understood, but even this complex subject is
more and more accessible now a days. Programming languages are more intu-
itive than before, and new microcontrolers building-frameworks are available,
making the building of a robot an achievable issue.

This work was born as a side-project of an information science engineer that
wants to learn and build its own robot and also go deeper into the insights of mi-
crocontrolers programming. Having a strong background in computer program-
ming and mechanical developments make it easier to understand and implement
the ideas, resulting that after several months of study, testing and errors, the
Toti robot was �nished.

Preprint submitted to Elsevier April 23, 2011

2

Figure 1: Toti �nished

Toti, as it can be seen �nished in Figure 1, was built upon the Arduino
platform with the important premise of being as cheap as possible. We want
to probe that using almost only recycled electronic components (like an old CD
player) a cheap robot can be made at home. The complete list of Toti's features
is:

• Double independent front-motor powered traction.

• Object detection and avoidance in dark or light conditions.

• Ambient light sensing.

• Dynamic light threshold con�guration.

• Start and stop button.

This paper goal is to show the building and development process of Toti, its
mayor advantages and disadvantages, the designs decisions taken and the re-
sults achieved, hoping they will be of some help to other researchers.

Our main contributions are:

1. The design of a cheap and functional robot.

2. The design of an object detection pulse-based algorithm.

In Section 2 we show the basic designs choices behind Toti, in Section 3 the
most important steps of its construction are shown, in Section 4 we share the
complete Toti program, in Section 5 we share some common problems and �xes
when testing Toti, in Section 6 we show the future PCB board that is under
construction and in Section 7 we present our conclusions.

3

2. Design

Toti's design can be described from both the mechanical/electronical point
of view or the programming point of view. From the mechanical point of view
Toti has a simple design, implementing only three wheels with two motors in
the front. This may not be the most implemented and optimal con�guration,
but was useful enough to work �ne. At the front it also has two infrared custom-
made distance sensors which helps Toti to avoid objects and a light sensor to
determine when to stop and hide in the dark.

From the programming point of view, Toti was developed using the Ar-
duino User Interface, that makes it easy to control the di�erent components
and sensors. This interface gives also the opportunity to program the AtMega
microcontroler with every low-level original primitives. At �rst we choose to use
the Arduino Duemilanove open platform because of its simplicity, wide adop-
tion, user base support and powerful capabilities. The Arduino has made it
easy to create the robot. In the next subsections we are going to better describe
every component of Toti.

2.1. Arduino

The Arduino platform1 was selected because of its easy of adoption, devel-
opment and versatility. We are not going to talk long about Arduino in this
paper, but some of the features that make us use it were:

• Uses FTDI chip for USB communication.

• Uses ATmega328 Microcontroller.

• Digital I/O Pins 14 (of which 6 provide PWM output).

• Analog Input Pins 6.

• DC Current per I/O Pin 40 mA.

• DC Current for 3.3V Pin 50 mA.

• Clock Speed 16 MHz.

• It is immensely popular and used as the core for many educational classes.

• It has both 3.3V and 5V regulated power supplies broken out.

• It has both USB and barrel jack ports for easy power, and communication.

• New to the Duemilanove is an auto power detection circuit. This will
automatically select power from the barrel jack or USB.

• All pins are broken out to female headers for easy connections.

1http://www.arduino.cc

2.2 Sensors 4

Figure 2: Self made IR sensor with one IR emitter and one IR receiver.

Figure 3: IR sensor calibration

2.2. Sensors

Usually, distance sensors are an expensive piece of equipment and not very
easy to �nd sometimes. This limitation has lead us to experiment and create
our own distance infrared sensors. Playing with sensors has been very entertain-
ing and educational and shed light over many of the complex situations that
we can �nd when building a robot. The �rst tests were done using recycled
mouse IR sensors, which worked �ne but had a very short distance range. After
these experiments, we buy two infrared light led receivers and two infrared led
transmitters to build some home made distance sensors. These sensors, as seen
in Figure 2, were adjusted and tested until we found the correct way to position
them and detect objects successfully. This leds were weld into a broken PCB
board to avoid movement and a four-row connector was attached to their end,
granting an easy assembly and disassembly.

2.3 Light detection 5

Figure 4: IR sensors calibration to detect sided objects

2.2.1. Object detection

Our sensors does not have any internal logic or pre-programming capabilities,
so we need to develop the detection logic in the main Arduino program. Object
detection was designed to avoid objects in Toti's path, but multiple con�gura-
tions were possible. Sensors were positioned 45 degree from Totis largest axis in
order to detect objects near the wheels. When, in the �rst tests, sensors were
positioned alongside (in parallel) with the largest Toti's axis, we were only able
to detect objects going straight to the sensors. In Figure 3, we show how these
sensors were calibrated to accomplish its task without problems. For example,
in Figure 4, we can see that Toti is able to detect objects perfectly almost 17cm
ahead and not fully in front of it. This was achieved mainly because of the use
of 45 degree IR sensors and a proper con�guration.

Thanks to José Marone advisory, we developed a detection algorithm which
was con�gured to send and detect the re�ection of an infrared (from now on
IR) beam. The main idea is to generate IR pulses with a certain shape and to
detect them with the IR receiver at the same moment. When no pulse is being
generated, no pulse should to be detected with the sensor. This is the main
reason of why we can detect objects with di�erent light conditions and in the
dark. An schema of the pulse detection principle can be seen in Figure 5.

2.3. Light detection

Toti was equipped with an LDR light sensor to detect when it is under some
light threshold value in order to stop working. The sensor was originally con�g-
ured to work with a �xed value but this caused troubles when the environmental
light characteristics change. To solve this issue, we reprogrammed the button
functionality to enable a quick light threshold value con�guration.

The new idea, was that before using Toti you could con�gure it on-the-�y to
work under the light characteristics of the place where you are. To con�gure Toti

2.4 Start and Stop functions 6

Pulse
Transmission

Time

Pulse
Detection

Pulse
Sensing

No objects Object detection

Figure 5: Object detection schema

dynamically, you must put it under the amount of light that you want to trigger
the stop condition and quickly double press the start button. If everything goes
right, the status led will blink twice and Toti will be ready to be used properly.
This dynamic con�guration of Toti empower the test of Toti under di�erent
circumstances.

2.4. Start and Stop functions

To stop and start the robot, it was equipped with a recycled CD reader
button. This button was placed at the rear of the robot and allows you to stop
and start it properly.

2.5. Motors

When trying to design the traction base, we have the same problem of very
expensive components as with sensors. It is very di�cult to �nd small and
cheap motors in the market, so we decided to reuse old CD players DC motors.
These motors are very powerful and three of them can be found on every old CD
player. We manage to control them using the PWM (pulse width modulation)
techniques embedded in the Arduino. In Figure 6 we can see our �rst motor
tests, trying to �nd out how was the optimal performance of it.

Motor's gear used in Toti were also the ones coming along with the motors
in the CD players, because they were already designed to work properly. After
a correct assembly, we can see in Figure 7 how the two main motors were put in
place. This last part of the motor building was the most time consuming and
di�cult, because we have to literally completely build the whole schema.

Robot motors were controlled by an L293D H-bridge.

2.5 Motors 7

Figure 6: DC motor test with a potentiometer.

Figure 7: Motors detail and back wheel detail.

8

Figure 8: Toti's �nal connection schema

3. Building procedure

Toti connection schema was done with the Fritzing software2, as can be seen
in Figure 8, and it allowed us to clearly design, measure and think every aspect
of it.

Toti was �rst build in a shoes box, until every test was �nished. Once we
knew which motors and sensors we were going to use, and that the program
was executing correctly, we start to build the �nal Toti shape from a tractor
toy's structure, as shown in Figure 9. From this base we create and assembly
the motors (Section 2.5), the sensors and the rest of the components.

3.1. Total cost

Toti's build cost was approximately of U$S 55, including the Arduino Duemi-
lanove, but our latest research about Arduino replacements has given us a new
opportunity to lower the total cost of Toti to U$S41 welding our own Severino

board3.

2http://fritzing.org/
3http://www.arduino.cc/en/Main/ArduinoBoardSerialSingleSided3

9

Figure 9: Trunk chassis to build Toti

4. Program

Arduino comes with a great user interface to correctly develop and pro-
gram the AtMega microcontroler. The USB connection makes it really easy
to develop, upload and test the improvements within seconds, speeding up the
process.

The �nal Toti's program can be found at AppendixA. Development was
done trying to create functions that could be reused later and easily modi�ed
using no external libraries except for the AVR include �les. Most of the func-
tionality was achieved using common Arduino's functions, but when we need to
manage time interrupts correctly, we have to use AtMega's functions directly
(i.e. ISR function)

The AtMega programming was quickly done mostly because of Arduino's
capability of wrapping up the microcontroler functions. For example, when
handling the digital outputs, we only need to assign the HIGH value using the
digitalWrite function.

5. Testing

Toti was tested at every stage for errors and corrections. And several videos
of these test can be seen online. The complete list of videos is:

• Toti was born: http://www.youtube.com/user/el2000draco#p/u/11/

F_7-pWR3jZU

• Second test, one motor: http://www.youtube.com/user/el2000draco#

p/u/10/-9bnMqFHg70

• Third test, one faster DCmotor: http://www.youtube.com/user/el2000draco#
p/u/9/73bsBmH0bQA

10

• Fourth test, DC motor speed control: http://www.youtube.com/user/

el2000draco#p/u/8/B5hEAzHt7x4

• Toti has an eye using a mouse optical infrared sensor: http://www.

youtube.com/user/el2000draco#p/u/7/1zriACR8kYY

• Toti with a distance sensor dodging objects: http://www.youtube.com/
user/el2000draco#p/u/6/qMGdY0s7Rvo

• Toti is smarter, dodging objects with and without light: http://www.

youtube.com/user/el2000draco#p/u/3/qu_qIJtRKS8

• Toti with two motors dodging objects: http://www.youtube.com/user/
el2000draco#p/u/2/Dyvbyy-sdTY

• Toti with two motors, dodging objects with more control: http://www.

youtube.com/watch?v=g_S219gpiJQ

• Toti using two DC motors, dodging objects with two sensors and sensing
daylight to sleep: http://www.youtube.com/user/el2000draco#p/u/0/
lX3ZSk9cZ40

• Added capacitors to add strength to the hardware design: http://www.

youtube.com/user/el2000draco#p/a/u/0/4v82Kq66QBw

6. PCB construction

After several months of usage, Toti shows great stability and precision, al-
lowing us to continue to the next phase of development. We started to design
and build the �nal PCB board that will hold Toti's components from now on.
In Figure 10 we can see the Fritzing design of this future PCB board, which was
made to match exactly with the Arduino shield shape.

7. Conclusion

This project has been very educational to us, resulting in an entertained
and useful experience. We were able to create and program a complete and
functional robot with U$S 55, which was tested on several di�erent environ-
ments. The Arduino platform was a key component that worked �ne along the
tests, even supporting some electrical miscon�gurations. We want to thanks
the MatesLab members and the teachers of the UNICEN University who have
made possible the �nalization of this project.

11

Arduino2

RIRER

RIREL

RIRSR
RIRSL

RB1

Led 1

RLED

IC1

RLDR

CIREL

CIRSL

CIRER

CIRSR

CMLCMR

CLDR1

CB1

C1

Figure 10: Toti's future PCB board shield

AppendixA. Arduino PDE program

#inc lude <avr / i o . h>
#inc lude <avr / i n t e r r up t . h>

// De f i n i t i o n s
#de f i n e INIT_TIMER_COUNT 0
#de f i n e RESET_TIMER2 TCNT2 = INIT_TIMER_COUNT

//
// Constants
//
const i n t switchPin = 2 ; // switch input . D i g i t a l
// Motor 1 i s r i g h t motor
const i n t motor1Pin1 = 10 ; // H−br idge l e g 1 (Motor 1 pin 1)
const i n t motor1Pin2 = 11 ; // H−br idge l e g 2 (Motor 1 pin 2)
// Motor 2 i s l e f t motor
const i n t motor2Pin1 = 8 ; // H−br idge l e g 3 (Motor 2 pin 1)
const i n t motor2Pin2 = 7 ; // H−br idge l e g 4 (Motor 2 pin 2)

const i n t enablePin = 9 ; // H−br idge enable pin
const i n t ledPin = 13 ; // LED
const i n t i rP in = 5 ; // Lector de luz 1 . Analogic
const i n t i rP in2 = 4 ; // Lector de luz 2 . Analogic
const i n t irdPinOutput = 3 ; // D i g i t a l . IR Emitter 1 (Le f t)
const i n t irdPinOutput2 = 12 ; // D i g i t a l . IR Emitter 2 (Right)
const i n t ldr Input1 = 3 ; // Analogic . Light s enso r

12

// Var iab l e s
i n t ldrHideValue = 900 ; // Ldr hide value . Under t h i s l i g h t va lue

// , t o t i stop t r a v e l i n g because i t wants to hide
// in shadow !

i n t ve l oc idad = 0 ;
i n t i rVa lue = 0 ;
i n t prev iousVe l = 0 ;
i n t d i s tanceValue = 10 ; // Valor ad−hoc que parece func ionar

// para e l s enso r i r 1 de entrada
i n t d i s tanceValue2 = 10 ; // Valor ad−hoc que parece func ionar

// para e l s enso r i r 2 de entrada .
// IR senso r 2 i s the r i g h t one .

long time = 0 ; // l a ult ima vez que e l pin de s a l i d a fue
// basculado . For powerin on and o f f .

long time2 = 0 ; // l a ult ima vez que e l pin de s a l i d a fue
// basculado . For l d r c on f i gu r a t i on .

long debounce = 400 ; // Button ' s DEbounce time . It ' s to avoid doing
// something WHILE you are p r e s s i n g the button
// from top to bottom . Buttons ' s t a t e read ing i s
// very f a s t , and t h i s he lps to wait u n t i l you
// f i n i s h pushing the button to do some ac t i on .

i n t read ing ; // l e c t u r a ac tua l de l pin de entrada
i n t prev ious = LOW; // l e c t u r a an t e r i o r de l pinX de entrada
i n t s t a t e = LOW; // estado ac tua l de l pin de s a l i d a
i n t int_counter = 0 ;
i n t ob s t a c l e [2] ;
i n t ldrValue1 = 0 ; //
i n t ldrMaxValue = 0 ; // Ldr max value

/∗
Timer handler i n t e r r up t i on

∗/
ISR(TIMER2_OVF_vect) {

int_counter += 1 ;

// This make us check ob s t a c l e s and l i g h t almost every 500ms . .
i f (int_counter == 100) {

senseObstac l e (&ob s t a c l e [0]) ;
i f (ob s t a c l e [0] == HIGH){

S e r i a l . p r i n t l n ("There i s an obs tacu l e in the r i gh t ") ;
}
i f (ob s t a c l e [1] == HIGH){

S e r i a l . p r i n t l n ("There i s an obs tacu l e in the l e f t ") ;
}

13

int_counter = 0 ;

// l i g h t management
ldrValue1 = analogRead (ldr Input1) ;
// S e r i a l . p r i n t l n (ldrValue1) ;
i f (ldrValue1 >= ldrMaxValue) {

ldrMaxValue = ldrValue1 ;
}

}
}

// Sense ob s t a c l e s
void senseObstac l e (i n t ∗ ob s t a c l e)
{

i n t valor1_P2 = 0 ; // IR Sensor 2
i n t valor1_A2 = 0 ; // IR Sensor 2
i n t valor2_P2 = 0 ; // IR Sensor 2
i n t valor2_A2 = 0 ; // IR Sensor 2

i n t valor1_P1 = 0 ; // IR Sensor 1
i n t valor1_A1 = 0 ; // IR Sensor 1
i n t valor2_P1 = 0 ; // IR Sensor 1
i n t valor2_A1 = 0 ; // IR Sensor 1

i n t i ;

//// Second IR
// F i r s t pu l s e
d i g i t a lWr i t e (irdPinOutput ,HIGH) ;
valor1_P1 = analogRead (i rP in2) ;

f o r (i =0; i <500; i++)
{
__asm__("nop\n\ t ""nop\n\ t ""nop\n\ t ""nop\n\ t ""nop\n\ t ") ;

}
d i g i t a lWr i t e (irdPinOutput ,LOW) ;
valor1_A1 = analogRead (i rP in2) ;
f o r (i =0; i <500; i++)
{
__asm__("nop\n\ t ""nop\n\ t ""nop\n\ t ""nop\n\ t ""nop\n\ t ") ;

}

14

// Second pu l s e
d i g i t a lWr i t e (irdPinOutput ,HIGH) ;
valor2_P1 = analogRead (i rP in2) ;
// S e r i a l . p r i n t l n (m i l l i s ()) ;
f o r (i =0; i <500; i++)
{
__asm__("nop\n\ t ""nop\n\ t ""nop\n\ t ""nop\n\ t ""nop\n\ t ") ;

}
d i g i t a lWr i t e (irdPinOutput ,LOW) ;
valor2_A1 = analogRead (i rP in2) ;
f o r (i =0; i <500; i++)
{
__asm__("nop\n\ t ""nop\n\ t ""nop\n\ t ""nop\n\ t ""nop\n\ t ") ;

}

// End second IR

// F i r s t IR
// F i r s t pu l s e
d i g i t a lWr i t e (irdPinOutput2 ,HIGH) ;
valor1_P2 = analogRead (i rP in) ;

f o r (i =0; i <500; i++)
{
__asm__("nop\n\ t ""nop\n\ t ""nop\n\ t ""nop\n\ t ""nop\n\ t ") ;

}
d i g i t a lWr i t e (irdPinOutput2 ,LOW) ;
valor1_A2 = analogRead (i rP in) ;
f o r (i =0; i <500; i++)
{
__asm__("nop\n\ t ""nop\n\ t ""nop\n\ t ""nop\n\ t ""nop\n\ t ") ;

}

// Second pu l s e
d i g i t a lWr i t e (irdPinOutput2 ,HIGH) ;
valor2_P2 = analogRead (i rP in) ;
// S e r i a l . p r i n t l n (m i l l i s ()) ;
f o r (i =0; i <500; i++)
{
__asm__("nop\n\ t ""nop\n\ t ""nop\n\ t ""nop\n\ t ""nop\n\ t ") ;

}
d i g i t a lWr i t e (irdPinOutput2 ,LOW) ;
valor2_A2 = analogRead (i rP in) ;
f o r (i =0; i <500; i++)

15

{
__asm__("nop\n\ t ""nop\n\ t ""nop\n\ t ""nop\n\ t ""nop\n\ t ") ;

}
// End f i r s t IR

//
// IR Sensor 2
// S e r i a l . p r i n t (" S1 : P2=");
// S e r i a l . p r i n t (valor2_P2) ;
// S e r i a l . p r i n t (" :A2=");
// S e r i a l . p r i n t (valor2_A2) ;
// S e r i a l . p r i n t (" (") ;
// S e r i a l . p r i n t (valor2_A2 − valor2_P2) ;
// S e r i a l . p r i n t (") − ") ;

// IR Sensor 1
// S e r i a l . p r i n t (" S2 : P2=");
// S e r i a l . p r i n t (valor2_P1) ;
// S e r i a l . p r i n t (" :A2=");
// S e r i a l . p r i n t (valor2_A1) ;
// S e r i a l . p r i n t (" (") ;
// S e r i a l . p r i n t (valor2_A1 − valor2_P1) ;
// S e r i a l . p r i n t l n (") ") ;

// We detec ted an ob j e c t at r i g h t
i f ((valor2_A1 − valor2_P1) > dis tanceValue){

ob s t a c l e [0] = HIGH;
}
e l s e {

ob s t a c l e [0] = LOW;
}

// We detec ted an ob j e c t at l e f t
i f ((valor2_A2 − valor2_P2) > dis tanceValue2){

ob s t a c l e [1] = HIGH;
}
e l s e {

ob s t a c l e [1] = LOW;
}

}

16

void setup () {
// Se t t i ng pin modes
pinMode (switchPin , INPUT) ;
pinMode (i rPin , INPUT) ;
pinMode (ldrInput1 , INPUT) ;
pinMode (motor1Pin1 , OUTPUT) ; //motor1
pinMode (motor1Pin2 , OUTPUT) ; //motor1
pinMode (motor2Pin1 , OUTPUT) ; //motor2
pinMode (motor2Pin2 , OUTPUT) ; //motor2
pinMode (enablePin , OUTPUT) ;
pinMode (ledPin , OUTPUT) ;
pinMode (irdPinOutput , OUTPUT) ;
pinMode (irdPinOutput2 , OUTPUT) ;

// s e t enablePin high so that motors can work
d i g i t a lWr i t e (enablePin , HIGH) ;

S e r i a l . begin (9600) ;
// b l i nk the LED 3 times . This should happen only once .
// i f you see the LED bl ink three times , i t means that the module
// r e s e t i t s e l f , . probably because the motor caused a brownout
// or a shor t .
b l i nk (ledPin , 3 , 100) ;

// Button management
// This s p e c i f i e s a func t i on to c a l l when an ex t e rna l i n t e r r up t occurs
// Most Arduino boards have two ex t e rna l i n t e r r up t s : numbers 0

// (on d i g i t a l pin 2) and 1 (on d i g i t a l pin 3)
//
// Third parameter d e f i n e s when the i n t e r r up t should be t r i g g e r e d .

// Four cont s tan t s are pr ede f in ed as va l i d va lue s :
// ∗ LOW to t r i g g e r the i n t e r r up t whenever the pin i s low ,
// ∗ CHANGE to t r i g g e r the i n t e r r up t whenever the pin changes value
// ∗ RISING to t r i g g e r when the pin goes from low to high ,
// ∗ FALLING f o r when the pin goes from high to low .
a t ta ch In t e r rup t (0 , prender , FALLING) ;

//
// Timer s e t i n g s
//
// No Timer Pre sca l e r ,
TCCR2A |= ((0<<CS22) | (0<<CS21) | (1<<CS20)) ;
// Use normal mode

17

TCCR2A |= (0<<WGM21) | (0<<WGM20) ;
// Use i n t e r n a l c l o ck − ex t e rna l c l o ck not used in Arduino
ASSR |= (0<<AS2) ;
//Timer2 Overflow In t e r rup t Enable
TIMSK2 |= (1<<TOIE2) | (0<<OCIE2A) ;
RESET_TIMER2;
//Enable Global I n t e r rup t s
s e i () ;

}

//////////////////////////
/////// STARTS ///////////
//////////////////////////

void loop () {

// State i s cont ro l ed by the button
i f (s t a t e == HIGH and ldrValue1 <= ldrHideValue){
// ob s t a c l e i s managed by the s en so r s

// I f no ob s t a c l e at f ront , go ahead !
i f (ob s t a c l e [0] == LOW and ob s t a c l e [1] == LOW) {
ade lante ('D' , 0 , prev iousVel , 1 5 0 , 3 0) ;

// I s the re an ob s t a c l e at r i g h t ?
} e l s e i f (ob s t a c l e [0] == HIGH){
// Go backwards
a t r a s ('D' , 1000 , previousVel , 2 5 5 , 4 0) ;
// Turn l e f t 45 degree s
turn1 (' l ' , 1 8 0) ;
// Continue

}
e l s e i f (ob s t a c l e [1] == HIGH){
// Go backwards
a t r a s ('D' , 1000 , previousVel , 2 5 5 , 4 0) ;
// Turn r i gh t 45 degree s
turn1 (' r ' , 1 8 0) ;

18

// Continue

}
} e l s e i f (s t a t e == LOW or ldrValue1 > ldrHideValue){

// Disab le motor
d i g i t a lWr i t e (motor1Pin1 , LOW) ; // s e t l e g 1 o f the H−br idge low
d i g i t a lWr i t e (motor1Pin2 , LOW) ; // s e t l e g 2 o f the H−br idge low
d i g i t a lWr i t e (motor2Pin1 , LOW) ; // s e t l e g 3 o f the H−br idge low
d i g i t a lWr i t e (motor2Pin2 , LOW) ; // s e t l e g 4 o f the H−br idge low
prev iousVe l =0;

}
} // void

//////////////////////////
///////////ENDS///////////
//////////////////////////

////////// FUNCTIONS /////////

/∗
motor1 i s the r i gh t motor
motor2 i s the l e f t motor
To move any motor forwards we s e t pin2 low and pin1 high
∗/

/∗
turn1 : Turn us ing both motors . One forwards and the other backwards
s i d e i s ' r ' f o r r i g h t and ' l ' f o r l e f t
ang le can be 45 or 90 f o r now .
∗/
void turn1 (char s ide , i n t ang le)
{

i f (s i d e=='r ') {
// Move second motor forwards and f i r s t motor backwards
d i g i t a lWr i t e (motor1Pin1 , LOW) ;
d i g i t a lWr i t e (motor2Pin2 , LOW) ;

d i g i t a lWr i t e (motor1Pin2 ,HIGH) ;

19

d i g i t a lWr i t e (motor2Pin1 ,HIGH) ;
i f (ang le == 45){

de lay (2 5 0) ;
} e l s e i f (ang le == 90){

de lay (5 0 0) ;
} e l s e i f (ang le == 180){

de lay (1000) ;
}
d i g i t a lWr i t e (motor1Pin2 ,LOW) ;
d i g i t a lWr i t e (motor2Pin1 ,LOW) ;

}
e l s e i f (s i d e=='l ') {

// Move f i r s t motor forwards and second motor backwards
d i g i t a lWr i t e (motor1Pin2 , LOW) ;
d i g i t a lWr i t e (motor2Pin1 , LOW) ;

d i g i t a lWr i t e (motor1Pin1 ,HIGH) ;
d i g i t a lWr i t e (motor2Pin2 ,HIGH) ;
i f (ang le == 45){

de lay (2 5 0) ;
} e l s e i f (ang le == 90){

de lay (5 0 0) ;
} e l s e i f (ang le == 180){

de lay (1000) ;
}
d i g i t a lWr i t e (motor1Pin1 ,LOW) ;
d i g i t a lWr i t e (motor2Pin2 ,LOW) ;

}
prev iousVe l = 0 ;

}

/∗
Both motors backwards
For func t i on prototype see the ' ade lante ' f unc t i on
∗/
void a t r a s (char modo , i n t tiempo , i n t velMin , i n t velMax , i n t faseDeAcel)
{

d i g i t a lWr i t e (motor1Pin1 , LOW) ; // s e t l e g 1 o f the H−br idge low
d i g i t a lWr i t e (motor2Pin1 , LOW) ; // s e t l e g 3 o f the H−br idge low
f o r (ve l o c idad=velMin ; ve loc idad<=velMax ; ve l o c idad=ve loc idad+faseDeAcel){

analogWrite (motor1Pin2 , ve l o c idad) ;
analogWrite (motor2Pin2 , ve l o c idad) ;
de lay (0) ;

20

}
// We s t o r e the v e l o c i t y were we ended in the prev io sVe l
prev iousVe l = velMax ;
i f (tiempo != 0){

de lay (tiempo) ;
}
i f (modo == 'F') {
// This Frenar func t i on i s c a l l e d going backwards
f r ena r ('B' , velMax , faseDeAcel) ;

}
}

/∗
Both motors forward
i f modo = 'D' i t goes d i r e c t l y ahead without stopping .
I f modo = 'F ' , i t w i l l s top a f t e r the time de lay .
ade lante (modo : 'D' para Directo (s i n de ja r de i r para ade lante) ,
'F ' para Frenar despues de c i e r t o tiempo , tiempo que anda
hasta que frena , v e l de comienzo , v e l de f i n a l , a c e l e r a c i o n)
∗/
void ade lante (char modo , i n t tiempo , i n t velMin , i n t velMax , i n t faseDeAcel)
{

d i g i t a lWr i t e (motor1Pin2 , LOW) ; // s e t l e g 1 o f the H−br idge low
d i g i t a lWr i t e (motor2Pin2 , LOW) ; // s e t l e g 1 o f the H−br idge low
f o r (ve l o c idad=velMin ; ve loc idad<=velMax ; ve l o c idad=ve loc idad+faseDeAcel){

analogWrite (motor1Pin1 , ve l o c idad) ;
analogWrite (motor2Pin1 , ve l o c idad) ;
// This de lay a l l ows the robot to show the slow change .
de lay (1 0) ;

}
// We s t o r e the v e l o c i t y were we ended in the prev io sVe l
prev iousVe l = velMax ;
i f (modo == 'F') {
// This Frenar func t i on i s c a l l e d going forwards

i f (tiempo != 0){
de lay (tiempo) ;

}
f r ena r ('F ' , velMax , faseDeAcel) ;

}
}

/∗
Stop s low ly both motors
∗/
void f r ena r (char hacia , i n t v e lOr i g ina l , i n t faseDeDesAcel)

21

{
i f (hac ia == 'F') {
// We were going forward be f o r e t h i s
f o r (ve l o c idad=ve lO r i g i n a l ; ve loc idad >0; ve l oc idad=ve loc idad−faseDeDesAcel){

analogWrite (motor2Pin2 , ve l o c idad) ;
analogWrite (motor1Pin1 , ve l o c idad) ;
de lay (3 0) ;

}
} e l s e i f (hac ia == 'B') {
// We were going backwards be f o r e t h i s
f o r (ve l o c idad=ve lO r i g i n a l ; ve loc idad >0; ve l oc idad=ve loc idad−faseDeDesAcel){

analogWrite (motor1Pin2 , ve l o c idad) ;
analogWrite (motor2Pin1 , ve l o c idad) ;
de lay (3 0) ;

}
}
prev iousVe l = 0 ;

}

/∗
b l i nk s an LED

∗/
void b l i nk (i n t whatPin , i n t howManyTimes , i n t m i l l i S e c s) {

i n t i = 0 ;
f o r (i = 0 ; i < howManyTimes ; i++) {

d i g i t a lWr i t e (whatPin , HIGH) ;
de lay (m i l l i S e c s / 2) ;
d i g i t a lWr i t e (whatPin , LOW) ;
de lay (m i l l i S e c s / 2) ;

}
}

/∗
Prender e l l ed
∗/

void prender ()
{

// Read the button , HIGH i s pre s sed
read ing = d ig i ta lRead (switchPin) ;

// S e r i a l . p r i n t (" Reading : ") ;
// S e r i a l . p r i n t (read ing) ;
// S e r i a l . p r i n t (" / ") ;
// S e r i a l . p r i n t ("Debounce i f : ") ;

22

// S e r i a l . p r i n t (m i l l i s () − time) ;
// S e r i a l . p r i n t (' OO ') ;

i f (read ing == HIGH) {
S e r i a l . p r i n t l n (m i l l i s () − time) ;

// Time == 0 sometimes when the poweron and powero f f i s used .
i f (m i l l i s () − time > 0 && m i l l i s () − time < 65) {

// I f you pre s s the button twice quick ly , s e t the l d r hide value ,
// to the value read j u s t now in the LDR. I t i s to c on f i gu r e
// under which amount o f l i g h t the robot w i l l f unc t i on .
// We a l s o sub s t r a c t 50 so the robot does not s t a r t and
// stop without knowing what to do i f the l i g h t
// i s a l i t t l e b i t v a r i ab l e .

ldrHideValue = analogRead (ldr Input1)−50;
S e r i a l . p r i n t (" LdrHide s e t to : ") ;
S e r i a l . p r i n t l n (ldrHideValue) ;
s t a t e = LOW;
d i g i t a lWr i t e (ledPin , s t a t e) ;
time = m i l l i s () ;

}

// read ing == 1 means that we are going to do something
// ONLY when the button comes from being pre s s ed to
// NOT being pr e s s . That i s , when you r e l e a s e i t !

i f (r ead ing == HIGH && m i l l i s () − time > debounce) {
i f (s t a t e == HIGH) {

s t a t e = LOW;
}
e l s e {

s t a t e = HIGH;
}
d i g i t a lWr i t e (ledPin , s t a t e) ;

}

time = m i l l i s () ;
}

}

