Building and programming an autonomous Robot

Garcia Sebastian
MatesLab
Mar del Plata, Buenos Aires, Argentina.

eldraco@gmail.com

Abstract

This paper is intended to show how it was designed, built and programmed an
autonomous robot cheap controlled using the Arduino open platform. Having no
prior experience in electronics, it was necessary to learn almost every electronic
principle and to overcome a lot of mechanical problems. New distance sensors
had to be created from scratch and several test were carried on before ending
with a working prototype.

Keywords: robotics, arduino, microcontroler

1. Introduction

Making robots and learn how to program them has been and it is the dream
of a lot of young boys, hackers, researchers and a lot people in general. Being
able to design and build your own robot seems to boost the imagination and
creativity. Some robot build-your-self kits had been even sold in street newspa-
pers kiosks with success and a lot of academic and non-academic work has been
done in the field. New kits and peripherals, now cheap enough to be bough by
most of people has also helped to bring this desire closer.

Nevertheless, building a robot still needs of microcontrolers to be programmed
and electronic components to be understood, but even this complex subject is
more and more accessible now a days. Programming languages are more intu-
itive than before, and new microcontrolers building-frameworks are available,
making the building of a robot an achievable issue.

This work was born as a side-project of an information science engineer that
wants to learn and build its own robot and also go deeper into the insights of mi-
crocontrolers programming. Having a strong background in computer program-
ming and mechanical developments make it easier to understand and implement
the ideas, resulting that after several months of study, testing and errors, the
Toti robot was finished.

Preprint submitted to Elsevier April 23, 2011

Figure 1: Toti finished

Toti, as it can be seen finished in Figure 1, was built upon the Arduino
platform with the important premise of being as cheap as possible. We want
to probe that using almost only recycled electronic components (like an old CD
player) a cheap robot can be made at home. The complete list of Toti’s features
is:

Double independent front-motor powered traction.

Object detection and avoidance in dark or light conditions.
e Ambient light sensing.

e Dynamic light threshold configuration.

e Start and stop button.

This paper goal is to show the building and development process of Toti, its
mayor advantages and disadvantages, the designs decisions taken and the re-
sults achieved, hoping they will be of some help to other researchers.

Our main contributions are:

1. The design of a cheap and functional robot.
2. The design of an object detection pulse-based algorithm.

In Section 2 we show the basic designs choices behind Toti, in Section 3 the
most important steps of its construction are shown, in Section 4 we share the
complete Toti program, in Section 5 we share some common problems and fixes
when testing Toti, in Section 6 we show the future PCB board that is under
construction and in Section 7 we present our conclusions.

2. Design

Toti’s design can be described from both the mechanical/electronical point
of view or the programming point of view. From the mechanical point of view
Toti has a simple design, implementing only three wheels with two motors in
the front. This may not be the most implemented and optimal configuration,
but was useful enough to work fine. At the front it also has two infrared custom-
made distance sensors which helps Toti to avoid objects and a light sensor to
determine when to stop and hide in the dark.

From the programming point of view, Toti was developed using the Ar-
duino User Interface, that makes it easy to control the different components
and sensors. This interface gives also the opportunity to program the AtMega
microcontroler with every low-level original primitives. At first we choose to use
the Arduino Duemilanove open platform because of its simplicity, wide adop-
tion, user base support and powerful capabilities. The Arduino has made it
easy to create the robot. In the next subsections we are going to better describe
every component of Toti.

2.1. Arduino

The Arduino platform! was selected because of its easy of adoption, devel-
opment and versatility. We are not going to talk long about Arduino in this
paper, but some of the features that make us use it were:

e Uses FTDI chip for USB communication.

e Uses ATmega328 Microcontroller.

e Digital I/O Pins 14 (of which 6 provide PWM output).

e Analog Input Pins 6.

e DC Current per I/O Pin 40 mA.

e DC Current for 3.3V Pin 50 mA.

e Clock Speed 16 MHz.

e It is immensely popular and used as the core for many educational classes.
e It has both 3.3V and 5V regulated power supplies broken out.

e It has both USB and barrel jack ports for easy power, and communication.

e New to the Duemilanove is an auto power detection circuit. This will
automatically select power from the barrel jack or USB.

e All pins are broken out to female headers for easy connections.

Thttp://www.arduino.cc

2.2 Sensors 4

Figure 2: Self made IR sensor with one TR emitter and one IR receiver.

Figure 3: IR sensor calibration

2.2. Sensors

Usually, distance sensors are an expensive piece of equipment and not very
easy to find sometimes. This limitation has lead us to experiment and create
our own distance infrared sensors. Playing with sensors has been very entertain-
ing and educational and shed light over many of the complex situations that
we can find when building a robot. The first tests were done using recycled
mouse IR sensors, which worked fine but had a very short distance range. After
these experiments, we buy two infrared light led receivers and two infrared led
transmitters to build some home made distance sensors. These sensors, as seen
in Figure 2, were adjusted and tested until we found the correct way to position
them and detect objects successfully. This leds were weld into a broken PCB
board to avoid movement and a four-row connector was attached to their end,
granting an easy assembly and disassembly.

2.3 Light detection 5

* Oem

Figure 4: IR sensors calibration to detect sided objects

2.2.1. Object detection

Our sensors does not have any internal logic or pre-programming capabilities,
so we need to develop the detection logic in the main Arduino program. Object
detection was designed to avoid objects in Toti’s path, but multiple configura-
tions were possible. Sensors were positioned 45 degree from Totis largest axis in
order to detect objects near the wheels. When, in the first tests, sensors were
positioned alongside (in parallel) with the largest Toti’s axis, we were only able
to detect objects going straight to the sensors. In Figure 3, we show how these
sensors were calibrated to accomplish its task without problems. For example,
in Figure 4, we can see that Toti is able to detect objects perfectly almost 17cm
ahead and not fully in front of it. This was achieved mainly because of the use
of 45 degree IR sensors and a proper configuration.

Thanks to José Marone advisory, we developed a detection algorithm which
was configured to send and detect the reflection of an infrared (from now on
IR) beam. The main idea is to generate IR pulses with a certain shape and to
detect them with the IR receiver at the same moment. When no pulse is being
generated, no pulse should to be detected with the sensor. This is the main
reason of why we can detect objects with different light conditions and in the
dark. An schema of the pulse detection principle can be seen in Figure 5.

2.3. Light detection

Toti was equipped with an LDR light sensor to detect when it is under some
light threshold value in order to stop working. The sensor was originally config-
ured to work with a fixed value but this caused troubles when the environmental
light characteristics change. To solve this issue, we reprogrammed the button
functionality to enable a quick light threshold value configuration.

The new idea, was that before using Toti you could configure it on-the-fly to
work under the light characteristics of the place where you are. To configure Toti

2.4 Start and Stop functions 6

Pulse
Transmission

e R R R A A

Pulse
Detection

Time

No objects Object detection

Figure 5: Object detection schema

dynamically, you must put it under the amount of light that you want to trigger
the stop condition and quickly double press the start button. If everything goes
right, the status led will blink twice and Toti will be ready to be used properly.
This dynamic configuration of Toti empower the test of Toti under different
circumstances.

2.4. Start and Stop functions

To stop and start the robot, it was equipped with a recycled CD reader
button. This button was placed at the rear of the robot and allows you to stop
and start it properly.

2.5. Motors

When trying to design the traction base, we have the same problem of very
expensive components as with sensors. It is very difficult to find small and
cheap motors in the market, so we decided to reuse old CD players DC motors.
These motors are very powerful and three of them can be found on every old CD
player. We manage to control them using the PWM (pulse width modulation)
techniques embedded in the Arduino. In Figure 6 we can see our first motor
tests, trying to find out how was the optimal performance of it.

Motor’s gear used in Toti were also the ones coming along with the motors
in the CD players, because they were already designed to work properly. After
a correct assembly, we can see in Figure 7 how the two main motors were put in
place. This last part of the motor building was the most time consuming and
difficult, because we have to literally completely build the whole schema.

Robot motors were controlled by an L293D H-bridge.

2.5 DMotors

Figure 6: DC motor test with a potentiometer.

Figure 7: Motors detail and back wheel detail.

Figure 8: Toti’s final connection schema

3. Building procedure

Toti connection schema was done with the Fritzing software?, as can be seen
in Figure 8, and it allowed us to clearly design, measure and think every aspect
of it.

Toti was first build in a shoes box, until every test was finished. Once we
knew which motors and sensors we were going to use, and that the program
was executing correctly, we start to build the final Toti shape from a tractor
toy’s structure, as shown in Figure 9. From this base we create and assembly
the motors (Section 2.5), the sensors and the rest of the components.

3.1. Total cost

Toti’s build cost was approximately of U$S 55, including the Arduino Duemi-
lanove, but our latest research about Arduino replacements has given us a new
opportunity to lower the total cost of Toti to U$S41 welding our own Severino
board?.

2http://fritzing.org/
3http://www.arduino.cc/en/Main/ArduinoBoardSerialSingleSided3

Figure 9: Trunk chassis to build Toti

4. Program

Arduino comes with a great user interface to correctly develop and pro-
gram the AtMega microcontroler. The USB connection makes it really easy
to develop, upload and test the improvements within seconds, speeding up the
process.

The final Toti’s program can be found at AppendixA. Development was
done trying to create functions that could be reused later and easily modified
using no external libraries except for the AVR include files. Most of the func-
tionality was achieved using common Arduino’s functions, but when we need to
manage time interrupts correctly, we have to use AtMega’s functions directly
(i.e. ISR function)

The AtMega programming was quickly done mostly because of Arduino’s
capability of wrapping up the microcontroler functions. For example, when
handling the digital outputs, we only need to assign the HIGH value using the
digitalWrite function.

5. Testing

Toti was tested at every stage for errors and corrections. And several videos
of these test can be seen online. The complete list of videos is:

e Toti was born: http://www.youtube.com/user/el2000draco#p/u/11/
F_7-pWR3jZU

e Second test, one motor: http://www.youtube.com/user/el2000draco#
p/u/10/-9bnMqFHg70

e Third test, one faster DC motor: http://www.youtube.com/user/el12000draco#
p/u/9/73bsBmHObQA

10

e Fourth test, DC motor speed control: http://www.youtube.com/user/
e12000draco#p/u/8/B5hEAZHt 7x4

e Toti has an eye using a mouse optical infrared sensor: http://www.
youtube.com/user/el2000draco#p/u/7/1zriACR8kYY

e Toti with a distance sensor dodging objects: http://www.youtube.com/
user/el2000draco#p/u/6/9qMGdYOs7Rvo

e Toti is smarter, dodging objects with and without light: http://www.
youtube.com/user/el12000draco#p/u/3/qu_qIJtRKS8

e Toti with two motors dodging objects: http://www.youtube.com/user/
e12000draco#p/u/2/Dyvbyy-sdTY

e Toti with two motors, dodging objects with more control: http://www.
youtube. com/watch?v=g_SQl9gpiJQ

e Toti using two DC motors, dodging objects with two sensors and sensing
daylight to sleep: http://www.youtube.com/user/el2000draco#p/u/0/
1X3ZSk9cZ40

e Added capacitors to add strength to the hardware design: http://www.
youtube.com/user/el2000draco#p/a/u/0/4v82Kq66QBw

6. PCB construction

After several months of usage, Toti shows great stability and precision, al-
lowing us to continue to the next phase of development. We started to design
and build the final PCB board that will hold Toti’s components from now on.
In Figure 10 we can see the Fritzing design of this future PCB board, which was
made to match exactly with the Arduino shield shape.

7. Conclusion

This project has been very educational to us, resulting in an entertained
and useful experience. We were able to create and program a complete and
functional robot with U$S 55, which was tested on several different environ-
ments. The Arduino platform was a key component that worked fine along the
tests, even supporting some electrical misconfigurations. We want to thanks
the MatesLab members and the teachers of the UNICEN University who have
made possible the finalization of this project.

11

Led L

[RIRRF

- RIREL

N
-—1+ RIRSL | I
RIRSR

m=] —_—
CIRSL CIRSR

Figure 10: Toti’s future PCB board shield

AppendixA. Arduino PDE program

#include <avr/io.h>
#include <avr/interrupt.h>

// Definitions
#define INIT TIMER_ COUNT 0
#define RESET TIMER2 TCNT2 = INIT TIMER COUNT

//

// Constants

//

const

int

switchPin = 2; // switch input. Digital

// Motor 1 is right motor
const int motorlPinl = 10; // H-bridge leg 1 (Motor 1 pin 1)
const int motorlPin2 = 11; // H-bridge leg 2 (Motor 1 pin 2)
// Motor 2 is left motor

const
const

const
const
const
const
const
const
const

int
int

int
int
int
int
int
int
int

motor2Pinl = §; // H-bridge leg 3 (Motor 2 pin 1)
motor2Pin2 = 7; // H-bridge leg 4 (Motor 2 pin 2)
enablePin = 9; // H-bridge enable pin

ledPin = 13; // LED

irPin = 5; // Lector de luz 1. Analogic

irPin2 = 4; // Lector de luz 2. Analogic
irdPinOutput = 3; // Digital. IR Emitter 1 (Left)
irdPinOutput2 = 12; // Digital. IR Emitter 2 (Right)
ldrInputl = 3; // Analogic.Light sensor

12

// Variables

int

ldrHideValue = 900 ; // Ldr hide value. Under this light wvalue
// , toti stop traveling because it wants to hide
// in shadow!

int velocidad = 0;
int irValue = 0;
int previousVel = 0;
int distanceValue = 10; // Valor ad—hoc que parece funcionar
// para el sensor ir 1 de entrada
int distanceValue2 = 10; // Valor ad—hoc que parece funcionar
// para el sensor ir 2 de entrada.
// IR sensor 2 is the right one.
long time = 0; // la ultima vez que el pin de salida fue

long time2

// basculado. For powerin on and off.
0; // la ultima vez que el pin de salida fue
// basculado. For ldr configuration.

long debounce = 400; // Button’s DEbounce time. It’s to avoid doing

int
int
int
int
int
int
int

/%

// something WHILE you are pressing the button
// from top to bottom. Buttons’ state reading is
// very fast, and this helps to wait until you
// finish pushing the button to do some action.

reading ; // lectura actual del pin de entrada
previous = LOW; // lectura anterior del pinX de entrada
state = LOW; // estado actual del pin de salida

int _counter = 0;

obstacle [2];
ldrvValuel = 0; //
ldrMaxValue = 0; // Ldr max value

Timer handler interruption

*/

ISR (TIMER2_OVF _vect) {

int

counter 4= 1;

// This make us check obstacles and light almost every 500ms..
if (int_counter = 100) {

senseObstacle(&obstacle [0]);
if (obstacle[0] = HIGH){
Serial.println ("There is an obstacule in the right");

if (obstacle[1] = HIGH){
Serial.println ("There is an obstacule in the left");
}

13
int _counter = 0;

// light management

ldrValuel = analogRead (ldrInputl);

//Serial.println (ldrValuel);

if (ldrValuel >= ldrMaxValue) {
ldrMaxValue = ldrValuel;

}

// Sense obstacles
void semnseObstacle (int xobstacle)

{

int valorl_P2 = 0; // IR Sensor 2
int valorl_A2 = 0; // IR Sensor 2
int valor2_P2 = 0; // IR Sensor 2
int valor2_A2 = 0; // IR Sensor 2
int valorl_P1 = 0; // IR Sensor 1
int valorl_Al = 0; // IR Sensor 1
int valor2_P1 = 0; // IR Sensor 1
int valor2_Al = 0; // IR Sensor 1

int i;

//// Second IR
// First pulse
digitalWrite (irdPinOutput ,HIGH) ;
valorl P1 = analogRead (irPin2);

for (i=0;1 <500;i++)
{

}

digitalWrite (irdPinOutput ,LOW);
valorl _A1l = analogRead (irPin2);
for (i=0;1 <500;i++)

{

}

asm__ ("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t");

asm__ ("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t");

14

// Second pulse

digitalWrite (irdPinOutput ,HIGH);
valor2_P1 = analogRead (irPin2);
//Serial.println (millis ());

for (i=0;1 <500;i++)

{

}

digitalWrite (irdPinOutput ,LOW);
valor2_A1l = analogRead (irPin2);
for (i=0;i <500;i-++)

{
}

// End second IR

_asm__ ("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t");

asm__ ("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t");

// First IR

// First pulse

digitalWrite (irdPinOutput2 ,HIGH);
valorl P2 = analogRead (irPin);

for (i=0;1 <500;i++)
{

_asm__ ("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t");

digitalWrite (irdPinOutput2 ,LOW);
valorl A2 = analogRead(irPin);
for (i=0;1 <500;i++)

{

}

// Second pulse

digitalWrite (irdPinOutput2 ,HIGH);
valor2 P2 = analogRead (irPin);
//Serial .println (millis ());

for (i=0;i <500;i++)

{

}

digitalWrite (irdPinOutput2 ,LOW);
valor2 A2 = analogRead(irPin);
for (i=0;1 <500;i++)

_asm__ ("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t");

__asm__ ("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t");

asm__

15

_("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t");

}
// End first IR

IR Sensor 2

Serial . print ("S1:P2=");
Serial.print (valor2 P2);
Serial.print (":A2=");

Serial.print (valor2_A2);

Serial .print (" (");
Serial.print(valorQ A2 — valor2 P2);
Serial .print (") — ");
IR Sensor 1

Serial.print ("S2:P2=");

Serial.print (valor2 P1);

Serial .print (":A2=");

Serial.print (valor2_Al);

Serial .print (" (");

Serial.print (valor2_Al — valor2_P1);
Serial .println (")");

// We detected an object at right
if ((valor2_Al — valor2_P1) > distanceValue){
obstacle [0] = HIGH;

else{

obstacle [0] = LOW;

}

// We detected an object at left
if ((valor2 A2 — valor2 P2) > distanceValue2){
obstacle [1] = HIGH;

}

else{

obstacle[1] = LOW;

16

void setup () {
// Setting pin modes
pinMode (switchPin , INPUT);

pinMode (irPin , INPUT);
pinMode(ldrInputl ,INPUT);

pinMode (motor1Pinl, OUTPUT); //motorl
pinMode (motor1Pin2, OUTPUT); //motorl
pinMode (motor2Pinl , OUTPUT); //motor2
pinMode (motor2Pin2 , OUTPUT); //motor2

pinMode
pinMode
pinMode
pinMode

enablePin , OUTPUT)
ledPin , OUTPUT);
irdPinOutput , OUTPUT);
irdPinOutput2 , OUTPUT);

NN AN AN AN N N N S N

// set enablePin high so that motors can work
digitalWrite (enablePin , HIGH);

Serial .begin (9600);

// blink the LED 3 times. This should happen only once.

// if you see the LED blink three times, it means that the module
// reset itself ,. probably because the motor caused a brownout

// or a short.

blink (ledPin, 3, 100);

// Button management
// This specifies a function to call when an external interrupt occurs
// Most Arduino boards have two external interrupts: numbers 0
// (on digital pin 2) and 1 (on digital pin 3)
/1

// Third parameter defines when the interrupt should be triggered.
// Four contstants are predefined as valid values:

// * IOW to trigger the interrupt whenever the pin is low,

// = CHANGE to trigger the interrupt whenever the pin changes value

// = RISING to trigger when the pin goes from low to high,

// * FALLING for when the pin goes from high to low.

attachInterrupt (0, prender, FALLING);

//

// Timer setings

//

// No Timer Prescaler,
TCCR2A |= ((0<<(CS22) | (0<<(CS21) | (1<<(CS20));
// Use normal mode

17

TCCR2A |= (0<<WGM21) | (0<<WGM);

// Use internal clock — external clock not used in Arduino
ASSR |= (0<<AS2);

//Timer2 Overflow Interrupt Enable

TIMSK2 |= (1<<TOIE2) | (0<<OCIE2A);

RESET TIMER2;

//Enable Global Interrupts

sei();

Ny,
[1]/]]] STARTS J/)/])]]/]]
ST T

void loop () {

// State is controled by the button
if (state = HIGH and ldrValuel <= ldrHideValue){
// obstacle is managed by the sensors

// If no obstacle at front, go ahead!
if (obstacle[0] =— LOW and obstacle[1] — LOW) {
adelante (’D’,0,previousVel ;150,30);

// Is there an obstacle at right?
telse if (obstacle[0] == HIGH){

// Go backwards

atras (’D’,1000, previousVel ,255,40);
// Turn left 45 degrees
turnl(’1’,180);

// Continue

else if (obstacle[1] == HIGH){

// Go backwards

atras (’D’,1000,previousVel ,255,40);
// Turn right 45 degrees

turnl (’r’,180);

// Continue

}
telse if (state =— LOW or ldrValuel > ldrHideValue){

// Disable motor

digitalWrite (motorlPinl,

digitalWrite (motorlPin2 ,

digitalWrite (motor2Pinl ,
(

digitalWrite (motor2Pin2 , LOW);

previousVel =0;

}
Y /) void

//]//////] FUNCIIONS /////]]]]
/%

motorl is the right motor
motor2 is the left motor

To move any motor forwards we

f

/*
turnl: Turn using both motors.

side is ’'r’ for right and ’1°
angle can be 45 or 90 for now.

*/

LOW

LOW

)
)
)
)

)

set
set
set
set

leg 1
leg 2
leg 3
leg 4

of
of
of
of

18

the
the
the
the

set pin2 low and pinl high

One forwards and the other backwards

for

void turnl(char side, int angle)

{
if (side=="r’){

left

H-bridge
H-bridge
H-bridge
H-bridge

// Move second motor forwards and first motor backwards

digitalWrite (motor1Pinl , TOW);
digitalWrite (motor2Pin2 , LOW);

digitalWrite (motor1Pin2 ;HIGH);

low
low
low
low

19

digitalWrite (motor2Pinl ,HIGH);

if (angle == 45){
delay (250);

telse if (angle — 90){
delay (500);

telse if (angle =— 180){
delay (1000);

}

digitalWrite (motorlPin2 ,JOW);
digitalWrite (motor2Pinl ,JOW);

else if (side=="1"){
// Move first motor forwards and second motor backwards
digitalWrite (motor1Pin2 , TOW);
digitalWrite (motor2Pinl , TOW);

digitalWrite (motor1Pinl ,HIGH);
digitalWrite (motor2Pin2 ;HIGH);
if (angle = 45){
delay (250);
}else if (angle = 90){
delay (500);
}else if (angle = 180){
delay (1000);
}

digitalWrite (motorlPinl ,JOW);
digitalWrite (motor2Pin2 ,JOW);

}

previousVel = 0;

/*

Both motors backwards

For function prototype see the ’adelante’ function

*/

void atras(char modo, int tiempo, int velMin, int velMax, int faseDeAcel)
{

digitalWrite (motorlPinl , LOW); // set leg 1 of the H-bridge low
digitalWrite (motor2Pinl , LOW); // set leg 3 of the H-bridge low
for (velocidad=velMin;velocidad <=velMax;velocidad=velocidad+faseDeAcel){
analogWrite (motor1Pin2 , velocidad);
analogWrite (motor2Pin2 , velocidad);
delay (0);

20

}
// We store the velocity were we ended in the previosVel
previousVel = velMax;

if (tiempo != 0){
delay (tiempo);
}

if (modo = ’F’){
// This Frenar function is called going backwards
frenar (’B’,velMax ,faseDeAcel);
}
¥

/*
Both motors forward
if modo = 'D’ it goes directly ahead without stopping.
If modo = 'F’, it will stop after the time delay.
adelante (modo: ’D’ para Directo (sin dejar de ir para adelante),
'F’ para Frenar despues de cierto tiempo, tiempo que anda
hasta que frena ,vel de comienzo, vel de final , aceleracion)
*
/
void adelante(char modo, int tiempo, int velMin, int velMax, int faseDeAcel)
{
digitalWrite (motor1Pin2 , TIOW); // set leg 1 of the H-bridge low
digitalWrite (motor2Pin2 , LOW); // set leg 1 of the H-bridge low
for (velocidad=velMin;velocidad<=velMax;velocidad=velocidad+faseDeAcel){
analogWrite (motorlPinl , velocidad);
analogWrite (motor2Pinl , velocidad);
// This delay allows the robot to show the slow change.
delay (10);
}
// We store the velocity were we ended in the previosVel
previousVel = velMax;
if (modo = ’'F’){
// This Frenar function is called going forwards
if (tiempo != 0){
delay (tiempo);
}
frenar (’F’,velMax , faseDeAcel);

/%

Stop slowly both motors
*/

void frenar (char hacia, int velOriginal , int faseDeDesAcel)

21

if (hacia == ’F’){

// We were going forward before this

for (velocidad=velOriginal;velocidad >0;velocidad=velocidad —faseDeDesAcel){
analogWrite (motor2Pin2 , velocidad);
analogWrite (motorlPinl , velocidad);
delay (30);

}
}telse if (hacia =— ’'B’){
// We were going backwards before this
for (velocidad=velOriginal;velocidad >0;velocidad=velocidad —faseDeDesAcel){
analogWrite (motor1Pin2 | velocidad);
analogWrite (motor2Pinl , velocidad);
delay (30);
}
}

previousVel = 0;

/ %
blinks an LED
*/
void blink (int whatPin, int howManyTimes, int milliSecs) {
int i — 0;
for (i = 0; i < howManyTimes; i++) {
digitalWrite (whatPin, HIGH);
delay (milliSecs /2);
digitalWrite (whatPin , LOW);
delay (milliSecs /2);
}
}

/*
Prender el led
/
void prender ()
{
// Read the button, HIGH is pressed
reading = digitalRead (switchPin);
// Serial.print ("Reading: ");
// Serial.prlnt(readlng)
// Serial.print (" / ");
(

// Serial.print ("Debounce if: ");

22

// Serial.print(millis () — time);
// Serial.print (> OO0 7);

if (reading = HIGH) {
Serial.println (millis () — time);

// Time =— 0 sometimes when the poweron and poweroff is used.
if (millis() — time > 0 && millis () — time < 65) {
// If you press the button twice quickly , set the ldr hide value,
// to the value read just now in the LDR. It is to configure
// under which amount of light the robot will function.
// We also substract 50 so the robot does not start and
// stop without knowing what to do if the light
// is a little bit variable.
ldrHideValue = analogRead (ldrInputl)—50;
Serial.print ("LdrHide set to : ");
Serial.println (ldrHideValue);
state = LOW;
digitalWrite (ledPin, state);
time = millis ();

// reading =— 1 means that we are going to do something
// ONLY when the button comes from being pressed to
// NOT being press. That is, when you release it!
if (reading == HIGH && millis () — time > debounce) {
if (state == HIGH) {
state = LOW;
}

else {
state = HIGH;
}

digitalWrite (ledPin , state);
}

time = millis ();
}
}

